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Introduction 

Records of patient health contain information on patients’ physical characteristics, as well 

as previous diagnoses and treatments. Secure and accurate storage of health information is 

critical for patients to receive the best possible care, but current systems of storage have 

introduced new problems for healthcare institutions and their patients. Today, Healthcare 

Information Technology (HIT) systems utilize Electronic Health Records (EHR), which house 

patient information on a computer-based storage. The rise of EHRs was catalyzed by 

advancements in medical technology (Haux, 2005) as paper-based storage systems could no 

longer keep up with the accompanying increase in data. In addition to the ability of storing 

significantly larger amounts of information, EHR implementations introduced multiple other 

benefits, such as decreases in documentation time (Poissant et al., 2005) and costs (Chaudhry et 

al., 2006), as well as providing data for clinical research (Haux, 2005). However, beyond the 

convenience of computer-based storage, the current system of EHRs can still be improved upon.  

The localization of information on EHRs have invited significant risks, where a single data 

breach may expose sensitive, confidential information. Additionally, it has been reported that 

over 50% of data breaches in healthcare information systems are due to internal factors, such as 

sending information to the wrong recipient (Jiang & Bai, 2018), highlighting the security risks of 

current EHRs. Furthermore, the current system limits patient agency over their information. 

According to the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule, 

requesting and receiving your information can take up to 60 days, and institutions have the 
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option of denying you access to the information. Moreover, data stored on EHRs is fragmented, 

with different institutions housing different information on the same patient. This happens when 

patients relocate, or visit multiple institutions for varying treatments, since it is the patient’s 

responsibility to update the institutions. To summarize, current EHRs are inefficient, imposing 

costs in both data security measures and patient agency, fragmenting patient information 

between institutions, and preventing patients from receiving the most accurate, effective 

treatment. Blockchain technology may be able to help.  

The blockchain is a chain of blocks, each of which hold data, a unique identification 

called a “hash”, as well as the hash of the previous block it is connected to. When new data is 

entered into the blockchain, it goes into a new block. A hash is calculated for that block, which 

then allows the new block to be added to the growing chain. Once the new block is added, data 

stored in the block is theoretically unchangeable (Yli-Huumo et al., 2016). This is because the 

hash is dependent on the data stored within the block, and even the tiniest of changes will 

necessitate the block to be re-hashed for the changes to be accepted. Furthermore, if changes are 

made to a block in the far past, all subsequent blocks become invalid as the hash of the tempered 

block is not recognizable anymore. In other words, subsequent blocks become unlinked from the 

blockchain. This means all subsequent blocks must be re-hashed for any changes to past data to 

be valid. Additionally, the blockchain exists as a distributed ledger, which means that each 

access point into the blockchain, called a “node”, has a full copy of the data stored on the 

blockchain. The nodes are constantly in communication with each other, verifying and agreeing 

on the contents of the blockchain. Therefore, it is understood that you need at least 51% of the 

total computing power of all nodes in a blockchain to be able to manipulate the blockchain. Only 

then will a tempered block be accepted by other nodes. This phenomenon, called a “51% attack” 
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has been theorized to be impossible, due to the sheer amount of computing power necessary to 

execute it (Yli-Huumo et al., 2016). Thus, blockchain implementation into EHRs could provide 

increased security from data breaches. Furthermore, since the blockchain is programmable, 

patients who store their health information on the blockchain will obtain the ability to grant 

information access to institutions or individuals, significantly increasing patient agency. 

Additionally, storing patient health information on a single blockchain would allow inter-

institutional sharing of data, directly increasing the potential of research, as well as creating 

holistic patient profiles which ensure that the most accurate diagnoses and treatments are being 

given to patients.  

Similar to how EHRs replaced paper-based storage systems as a solution to a data-

management problem, blockchain technology may replace EHRs as a solution to the issues of 

data security, fragmentation, and patient agency. Blockchain technology would also produce the 

benefits of increased research that translates into improved healthcare treatments. In this paper, it 

is argued that implementation of blockchain technology into current healthcare information 

systems will increase social efficiency. Through a modeling approach, it is shown that at the 

private level, institutions are not incentivized to implement the blockchain without government 

or third party subsidies into software development, and that only private institutions large and 

advanced enough to reap the benefits of research will be incentivized to implement blockchain 

technology. At the social level, it is shown that the socially efficient number of implementation 

is at least greater than one, and that there is a social demand for blockchain implementation. In 

the following sections, I will be reviewing the literature on EHRs and blockchain applications 

into healthcare, and subsequently introduce the model and its results.  
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Literature Review 

 Due to the novel nature of blockchain technology, literature is lacking on empirical 

studies that attempt to quantify the benefits of implementation. As a starting point, we will 

review the literature on current healthcare information systems and then proceed into discussing 

current applications of blockchain technology in healthcare.  

 Previous studies have examined the effects of Electronic Health Records (EHRs) and 

Health Information Technology (HIT) on the quality and efficiency of healthcare. Haux (2005) 

analyzes the developmental process of health information systems. This review article 

summarizes the published literature on the transition from a paper- to computer-based 

information storage and further predicts the consequences HIT systems will produce in the 

future. Haux (2005) describes that along with the advancement of medical technology, care 

providers began to collect more data than they could handle, which prompted the introduction of 

computer-based data storage. This implementation significantly increased the level of data 

processing as well as the possibility of applying patient information to other fields, such as 

clinical research. Whereas patient information prior to computer-based systems merely 

functioned as historical records, it could now contribute to the improvement of health care and 

treatments through research. Haux (2005) claims that such extended benefits of computer-based 

information systems explain their dominance in utility today, but acknowledges the existence of 

the remaining aspects of paper-based systems that may be continued for legal reasons. He 

describes that the coexistence of paper- and computer-based systems is redundant, and can 

produce higher costs and effort in maintaining organization and accessibility. In turn, Haux 

(2005) envisions a future in which care providers completely shift over to computer-based 
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systems, as well as regional and global HITs, through which healthcare may advance via global 

access to health services and medical knowledge.  

 However, even if the theoretical benefits of computer-based HITs have been accepted by 

care providers, analysis must be conducted on their quantitative impact. Poissant et al. (2005) 

reviewed articles listed in MEDLINE, CINAHL, HEALTHSTAR, and Current Health databases 

that discussed the efficiency of EHRs. The 23 studies qualified for review had documented 

quantitative time differences, with health professionals as their subjects. To compare results 

across different studies, 95% confidence intervals were constructed for time differences in paper 

or computer documentation, and variability in sample sizes were accounted for by calculating 

weighted averages. Poissant et al. (2005) concluded that there was a lack of consensus between 

studies with wide ranges of both increases and decreases in documentation time being reported. 

However, general trends indicated that nurses were more likely to benefit from a computer-based 

system (reported a 2.1% - 45.1% decrease in documentation time) than physicians (reported 

8.2% - 238.4% increase in documentation time), potentially due to the difference in work 

processes. It was also noted that the increase in physicians’ documentation time may be due to 

physicians taking advantage of the multifunctionality of EHRs. 

  As indicated by Poissant et al. (2005), the complexity of quantifying the quality and 

efficiency benefits of EHR implementation seems to be a significant limitation of these studies. 

Due to this limitation, Buntin et al. (2011) chose to categorize 154 articles that discuss the effects 

of HIT implementation by overall positive and negative outcomes. Articles that were overall 

positive associated HIT implementation with a pareto improvement in one or more aspects of 

care. Buntin et al. (2011) indicated that 96 (62%) articles were positive and 142 (92%) were 

positive or mixed-positive, where there were at least one negative aspect but the outcome was 
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positive overall. It was additionally noted that studies that measured the care provider’s or staff 

satisfaction of EHR implementation were less likely to be a positive outcome, while studies that 

utilized statistical hypothesis testing were 2.1 times more likely to produce a positive outcome. 

This suggests that the sentiments of care providers may impede implementation of new 

technology, such as the EHR, that may be a net-benefit for healthcare.  

  The general positive outcome of EHR implementation indicated by Buntin et al. (2011) 

may provide some incentive for care providers to be welcoming of new technologies in 

healthcare data management, but a cost-benefit analysis is a more sure-fire way of convincing 

institutional stakeholders through financial incentives. In acknowledgement of the limitation of 

translating any realized benefits into monetary (quantitative) data, Chaudhry et al. (2006) 

conducted a systematic review of 257 articles on HIT implementation, focusing on its effects on 

quality, efficiency, and costs of health care. They conclude that HIT implementation resulted in 

an increased adherence to protocol-based care, as well as a 65% decrease in identification time 

and 14% increase in identification of hospital-acquired infections. Overall, HIT implementation 

increased care delivery by 12-20%, as well as a 12.7-25.4% decrease in cost, suggesting an 

increased efficiency in health care and treatments. Chaudhry et al. (2006) does note, however, 

that the total development and implementation costs could not be calculated with accuracy. 

Another important limitation of the study was identified as the prevalence of the outcomes of 

benchmark leaders— institutions that accounted for more than 5% of the 257 articles reviewed. 

Chaudhry et al. (2006) noticed that a disproportionate amount of benefits were realized by 

benchmark leaders who were comparatively more resourceful and experienced, having gradually 

prepared themselves to implement HIT systems. Thus, the results outlined by the study may not 

be generalizable to different implementation settings. In other words, even though the 
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implementations of HIT systems seem to increase the quality and efficiency of care, these results 

may not be replicable in other settings.  

 A significant difference between EHRs / HIT systems and blockchain technology is that 

whereas HIT systems are centralized to their respective institution’s servers, blockchain 

technology installs nodes that connect to a decentralized server that is distributed across multiple 

nodes. Thus, implementing blockchain technology into HIT systems would effectively minimize 

the costs of back-end data processing as server maintenance is no longer an issue for all adopters. 

Additionally, the nature of the blockchain possesses characteristics that are desirable to HIT 

systems, such as accessibility, immutability, privacy, and interoperability, leading to the idea that 

blockchain implementation may overcome the shortcomings of and perhaps even replace current 

HIT systems, further improving healthcare for everyone.   

 Peterson et al. (2016) presents a blockchain-based approach to sharing patient data and 

discusses the advantages such a practice would entail. Peterson et al. (2016) argues that the 

patient should have full access of their data and that the benefits of sharing healthcare 

information in a data sharing network across institutional boundaries, such as the blockchain, 

will lead to increased data utility and healthcare. Although there are no quantitative evidences 

presented, the article introduces the theoretical benefits blockchain implementation would 

produce. These include patients having full stewardship of their data, greater amount of data 

accessible for utility (research, clinical trial information), decreased risk of cyber-attacks to a 

single centralized entity, and the elimination of data-driven competitive advantage between 

institutions that would encourage collaboration and ultimately lead to an improved quality of 

care. Additionally, sharing patient data across institutions also require homogeneity in data 

structure and formatting for interoperability, which current EHR and HIT systems cannot easily 
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adopt due to already existing practices. It is important to note that Peterson et al. (2016) does not 

fully account for a Proof of Work model, in which miners that verify blocks added on to the 

blockchain are somehow (mostly financially) compensated. Rather, an idealistic consensus 

model is proposed, where nodes are incentivized to provide proof of valid data (in terms of 

interoperability standards) in order to retain their status as a node in being connected to the 

blockchain. 

 As promising as blockchain implementation into HIT systems may seem to be according 

to Peterson et al. (2016), it is important to recognize the limitations of novel technology. Angraal 

et al. (2017) raises some concerns about implementing blockchain technology, stating that the 

sharing of private information on a public platform, no matter how encrypted, face potential risks 

of identification. Furthermore, implementation must comply with regulatory requirements, which 

require further costs to draft and execute. Finally, there is not enough data available to address 

whether blockchain implementation into HIT systems would be cost-effective in terms of 

hardware, implementation, support, and any other associated expenditures. Angraal et al. (2017) 

concludes by stating that the limitations enumerated above may serve as barriers of 

implementation and that although promising, blockchain technology may not live up to its 

expectations in healthcare.  

 Then, in order to minimize the limitations mentioned by Angraal et al. (2017), perhaps 

current applications of blockchain technology as HIT systems can be analyzed and reviewed for 

potential advantages and disadvantages. Ekblaw et al. (2016) introduces MedRec, “a prototype 

for electronic health records and medical research data” that exists on the blockchain.  Ekblaw et 

al. (2016) recognizes the fragmented structure of current EHRs, where institutions fail to possess 

complete health records unless updates are requested by the patient themselves. This lack of 
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cohesive data presents a societal cost in which data utility is greatly reduced and the opportunity 

for potential advancements in healthcare research and treatments are missed. With MedRec, 

patients are able to upload and update their information on the blockchain, as well as retain 

complete agency over their information across institutional boundaries. Additionally, with the 

use of “smart contracts”, programmable code that runs on the blockchain, patients would be able 

to grant other parties access to their information upon appropriate verification. And since the 

decentralized nature of the blockchain eliminates a central target for cyber-attacks, the risk of 

data leaks are minimized. Furthermore, as the amount of data increases, data processing and 

analysis techniques could be used to identify certain patterns of health characteristics that inform 

both care providers and patients of patient conditions. Ekblaw et al. (2016) also mentions the 

integration of information from other facets of health data, such as information collected by 

wearables (Fitbit, Apple Watch) and other sources (23andMe). Thus, a holistic profile of the 

patient can be created and maintained on the blockchain. In contrast to Peterson et al. (2016) 

which suggests an ideal consensus model, Ekblaw et al. (2016) recognizes the financial 

incentives that must exist for the blockchain to continue its operations. A data reward for mining 

is suggested, where miners are able to receive a “bounty query” for verifying a block. A “bounty 

query” is described as aggregated, anonymized medical data that could be used in data analysis. 

In terms of feasibility, Ekblaw et al. (2016) states that implementation of MedRec is designed to 

occur on top of EHRs, promising a smooth transition. Currently, MedRec is being tested at the 

Beth Israel Deaconess Medical Center at Harvard Medical School to obtain data on the costs and 

benefits of implementation. Their findings will serve as a starting point for blockchain 

implementation into HIT systems and perhaps incentivize other institutions to adopt the 

technology as well.  
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 With a growing interest in blockchain technology implementation into the field of 

healthcare information management, it is crucial to address whether such adaptions would be 

cost-effective. Similar to the rise of EHRs and their climb over paper-based information systems, 

blockchain technology is expected to soon replace current EHRs with promises of complete 

patient agency over healthcare information, improved data utility, and interoperability. Previous 

studies, to the best of my knowledge, have not attempted to model the cost-benefit analysis of 

blockchain implementation into healthcare information systems. In doing so, this paper will 

hopefully provide financial insight into blockchain technology and introduce a greater incentive 

to potential implementors than speculative benefits. Below, I present a theoretical model which 

analyzes the efficiency behind blockchain technology implementation into HIT systems.  

 

The Model 

As research into blockchain technology begins to identify potential applications (Zhao et 

al., 2016; Zibin et al., 2018), cases of implementation have begun to rise. The health care 

industry is one of such potential implementation fields, where blockchain technology may 

increase the cost efficiency of data organization and management compared to current 

infrastructure that manage patient records, such as Electronic Health Record (EHR) and Health 

Information Technology (HIT) systems. This paper utilizes a simple model to examine whether 

such an implementation would be beneficial, and attempts to identify the specific conditions that 

would incentivize patient-record keeping institutions to adopt blockchain technology.  

 In order to simplify the model, it is assumed that benefits are in the form of utility that are 

converted into quantifiable, financial measures. It is also assumed that institutions are equal in 

size, which implies that the number of intra-institution implementations and the resulting costs 
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are equal across institutions at the private level. Further assumptions will be described when 

necessary.  

The model begins by defining the constituents of costs and benefits at the private level. 

Private cost (CP) is a sum of the cost of maintenance (CM), transferring existing records on to the 

blockchain (CT), designing software (CD), and implementation (CI).  

𝑬𝒒. 𝟏				𝐶' = 𝐶) + 𝐶+ + 𝐶, + 𝐶- 

At the private level, it is assumed that 𝐶- ≫ (𝐶) + 𝐶+ + 𝐶,) due to the novelty of blockchain 

technology and the expertise necessary for software design as well as data architecture. Thus as 

the private level, cost is dictated by CD. 

𝑬𝒒. 𝟐				𝐶' ≈ 𝐶- 

Since it is assumed that the costs of implementation are equal across institutions, social 

cost (CS) is assumed to increase linearly with the number of institutions that undergo 

implementation (X), described by: 

𝑬𝒒. 𝟑				𝐶4 = 𝑋 ∗ 𝐶' 

However, at the social level, it is assumed that the first institution to implement the software has 

paid for the cost of software design, and so CD ≈ 0 at the social level. Therefore, social cost is 

the sum of maintenance, transfer, and implementation costs multiplied by the number of 

institutions. 

𝑬𝒒. 𝟒				𝐶4 = 𝑋 ∗ (𝐶) + 𝐶+ + 𝐶,) 

 As for the benefits of blockchain implementation, private benefit (BP) can be described as 

the benefits of security, research, and reduced misdiagnosis: 

𝑬𝒒. 𝟓				𝐵' = (1 − 𝛽') ∗ 𝐵=>? + 𝛾 ∗ 𝛿 ∗ (𝐵B>=) − (1 − 𝛼) ∗ 𝐶DE= 
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Where (𝛽') is the probability of a security breach at the private level, and (𝐵=>?) is the benefit of 

the immutability of records. The benefits of research (𝐵B>=) is multiplied by the probability of 

research being successful (𝛾) and the proportion of access into other institutions’ data (𝛿). At the 

private level, it is assumed that (𝛿) < 1. (𝐶DE=) is the cost of misdiagnosing patients and is 

multiplied by (1 − 𝛼), (𝛼) being the proportion of how whole and complete patient records are. 

𝛼 is a function of 𝛿, 𝛼(𝛿), where GH
GI
> 0 , since the greater number of institutional data 

available, the more complete patient records will be.  

 At the social level, social benefit (BS) is also a linear function of the number of 

implementations (X), but is also described by the utility patients receive from the increased 

agency over their records (𝐵L). As (X) increases, (𝐵L)’s contribution to social benefit also 

increases due to the increased number of institutions patients can transfer, retrieve, and grant 

permission to their data. Thus, (𝐵L) describes both the patient’s agency over their data as well as 

the convenience they receive by storing their data on the blockchain. 

𝑬𝒒. 𝟔				𝐵4 = 𝑋 ∗ [𝐵' + 𝐵L(𝑁)] 

In this equation, (N) is the number of people with health records in a given society, and it is 

assumed that each individual gets the same amount of utility over having greater agency over 

their records. Writing out the full equation of social benefit, we get: 

𝑬𝒒. 𝟕				𝐵4 = 𝑋 ∗ [(1 − 𝛽4) ∗ 𝐵=>? + 𝛾 ∗ 𝛿 ∗ (𝐵B>=) − (1 − 𝛼) ∗ 𝐶DE= + 𝐵L(𝑁)] 

Since greater access to a larger number of institutions’ data will be granted at the social level, it 

will be assumed that (𝛿) = 1. The probability of a security breach at the social level is less than 

that at the private level, 𝛽4 < 𝛽', due to an increased connectivity of a greater amount of data 

requiring a significantly greater amount of energy and effort to conduct a 51% attack that can 

violate the immutability of the blockchain (Yli-Huumo et al., 2016). It will also be assumed that 
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𝛼 is greater at the social level (𝛼4) than the private level (𝛼') as patient data becomes more 

holistic with greater number of implementations across distinct institutions.  

 Following the conventional logic behind economic incentives, we expect private 

institutions to only undergo implementation of blockchain technology if the derived benefits 

outweigh the costs. At the private level, the following condition must be satisfied 𝐶' < 𝐵': 

𝑬𝒒. 𝟖				𝐶- < (1 − 𝛽') ∗ 𝐵=>? + 𝛾 ∗ 𝛿 ∗ (𝐵B>=) − (1 − 𝛼) ∗ 𝐶DE= 

To satisfy the condition, and for the right side of the expression to be a positive number, we see 

that (1 − 𝛽') ∗ 𝐵=>? + 𝛾 ∗ 𝛿 ∗ (𝐵B>=) > (1 − 𝛼) ∗ 𝐶DE=. In other words, the benefits derived from 

the increased security and research must be greater than the total costs of misdiagnosis. 

Additionally, let us assume that (1 − 𝛽') ∗ 𝐵=>? << 𝛾 ∗ 𝛿 ∗ (𝐵B>=). This is driven by the notion 

that institutions that house patient records, such as hospitals, derive greater benefit from research 

than from having a secure database. This is supported by the fact that successful research can be 

translated into treatment procedures that profit the institution, while increased security measures 

simply exist to prevent data breaches. These assumptions show that private benefit (𝐵') is mostly 

driven by the benefits of research. Thus, the conditions for private implementation becomes: 

𝑬𝒒. 𝟗				𝐶- + (1 − 𝛼) ∗ 𝐶DE= < 𝛾 ∗ 𝛿 ∗ (𝐵B>=) 

Rearranging the expression shows that the expected benefit of research, 𝛾 ∗ 𝛿 ∗ (𝐵B>=), requires a 

minimum of 𝐵B>= >
TU
V∗I

 , when (𝐶DE= = 0). As both 𝛾 and 𝛿 are parameters with values between 

0 and 1, this expression indicates that institutions that may not be large or advanced enough to 

reap significant benefits of research would not be financially incentivized to implement 

blockchain technology at the private level.  

 At the social level, the socially efficient number of implementation can be found by the 

point at which marginal benefit equals marginal cost. A derivation of social cost (𝐶4) and social 
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benefit (𝐵=) with respect to the number of implementations (X) give the following equations of 

marginal cost (𝑀𝐶=) and marginal benefit (𝑀𝐵4). 

𝑬𝒒. 𝟏𝟎				𝑀𝐶= =
𝑑𝐶4
𝑑𝑋 = 𝐶) + 𝐶+ + 𝐶, 

𝑬𝒒. 𝟏𝟏				𝑀𝐵= =
𝑑𝐵4
𝑑𝑋 = (1 − 𝛽) ∗ 𝐵=>? + 𝛾 ∗ 𝛿 ∗ (𝐵B>=) − (1 − 𝛼) ∗ 𝐶DE= + 𝐵L(𝑁) 

Setting the marginal cost equal to marginal benefit and rearranging the terms by separating costs 

and benefit variables, we get: 

𝑬𝒒. 𝟏𝟐		𝐶) + 𝐶+ + 𝐶, +	(1 − 𝛼) ∗ 𝐶DE= = 	 (1 − 𝛽) ∗ 𝐵=>? + 𝛾 ∗ 𝛿 ∗ (𝐵B>=) + 𝐵L(𝑁) 

At the private level, it was established that 𝐶- ≫ (𝐶) + 𝐶+ + 𝐶,) and private institutions would 

only be incentivized to implement blockchain technology if the benefits derived from research is 

greater than the sum of the cost of software design and misdiagnosis (Eq. 9). Therefore, 

substituting 𝐶- for (𝐶) + 𝐶+ + 𝐶,)	would show: 

𝑬𝒒. 𝟏𝟐		𝐶- +	(1 − 𝛼) ∗ 𝐶DE= > 	 (1 − 𝛽) ∗ 𝐵=>? + 𝛾 ∗ 𝛿 ∗ (𝐵B>=) + 𝐵L(𝑁) 

However, keep in mind that the completeness of patient data (𝛼) is greater, the probability of 

security breach at the social level (𝛽4) is less, and the proportion of access to other institutions’ 

data 𝛿 = 1 at the social level. Additionally, with the summation of benefits including the benefits 

of patient agency 𝐵L(𝑁), these changes in the parameters of social benefit (𝐵=) may be enough 

to offset the difference between marginal cost (𝑀𝐶=) and marginal benefit	(𝑀𝐵=). Thus, a new 

expression is derived:  

𝑬𝒒. 𝟏𝟑				𝐶- +	(1 − 𝛼) ∗ 𝐶DE= ≤ (1 − 𝛽) ∗ 𝐵=>? + 𝛾 ∗ 𝛿 ∗ (𝐵B>=) + 𝐵L(𝑁) 

Eq. 13 indicates that the increased access of interinstitutional data and patient agency as well as 

the decreased possibility of security breach, at the social level, satisfies the conditions of 

implementation at the private level (Eq. 9), suggesting that the socially efficient number of 



 15 

implementation is at least greater than the number of implementations that will take place at the 

private level. In other words, the socially efficient number of implementations is greater than 

one. Accordingly, considering the cost-benefit analysis of a private institution under the 

assumption that the software has been built (𝐶- = 0), it can be seen that the benefits are more 

likely to outweigh the costs (Eq. 9), and institutions would be more incentivized to implement 

blockchain technology. 

The model shows that at the private level, only large institutions that can derive enough 

benefits of research (𝐵B>=) to outweigh at least the cost of software design (𝐶-) would be 

incentivized to implement the blockchain (Eq. 9). This suggests that implementation at the 

private level may be sub-optimum without government subsidy or other 3rd party investments 

that can significantly lower (𝐶-). These results indicate a first mover disadvantage into 

blockchain implementation as the sole bearer of the costs of software design. At the social level, 

however, the model shows that the socially efficient level of implementation is at least greater 

than one (Eq. 13). Thus, to meet the social demand for blockchain implementation, governments 

should subsidize the cost of software development.  

 

Sensitivity to Assumptions 

At the private level it was assumed that the cost of software design (𝐶-)	outweighs other 

costs of implementation due to blockchain being a novel technology. It may as well be that due 

to this novelty, other costs such as maintenance (𝐶)), data transfer (𝐶+), and implementation 

(𝐶,) are much more significant than expected, which would worsen the disparity between private 

cost and benefit and further disincentivize even large institutions from implementing blockchain 

technology. If the listed costs are indeed considerable in size, the socially ideal condition (Eq. 
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12) would also be affected and the changes in parameters at the social level (Eq. 13) may not be 

enough to set the ideal number of implementations greater than 1. The changes in parameters at 

the social level are also theoretical in nature, and may not induce the outcome shown in Eq. 13. 

For the outcome to remain unchanged under the condition that social parameters do not satisfy 

Eq. 13, a greater amount of government subsidy is needed for blockchain implementation to 

occur.  

Additionally, at the private level it was assumed that the benefit of research (𝐵B>=) is 

much greater than the benefit of data security (𝐵=>?), which may not hold true for all institutions 

that hold patient records, such as insurance companies that may not conduct scientific research at 

all (𝐵B>= = 0). For such scenarios private benefit would be mostly determined by 𝐵=>?: 

𝑬𝒒. 𝟏𝟒				𝐶- + (1 − 𝛼) ∗ 𝐶DE= < (1 − 𝛽') ∗ 𝐵=>? 

This suggests that private institutions that do not conduct research would only be incentivized to 

implement blockchain technology if the derived benefit in security is greater than the cost. For 

such institutions, a greater government subsidy will be necessary to hold Eq. 14 true, as it is 

assumed that the benefits of increased research greatly outweighs the benefits of increased 

security, in general. As granting a larger subsidy to a non-research institution is riskier, 

especially since non-research institutions are unlikely to be as advanced as research institutions, 

it would be recommended for the government to grant subsidies to research institutions as the 

first site of implementation. Such a policy would meet the social demand of implementation with 

minimal cost.  

 Finally, as the model takes place when blockchain technology is still relatively new and 

costly to implement, it was assumed that costs are mostly driven by the technological factors. As 

blockchain technology becomes normalized into society and the costs of development drops, 
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costs may be significantly determined by the costs of misdiagnosis (𝐶DE=) in the cost-benefit 

analysis. Such circumstances would increase the likelihood of benefits outweighing costs at the 

private level (Eq. 9). If this assumption holds true, private institutions may be incentivized to 

implement the blockchain without subsidization, and government subsidies should not be 

allocated as they would only incur costs and lower social efficiency. 

 

Alternative specifications or applications of the model 

The model assumes that social cost and benefit are linearly dependent on private cost and 

benefit, respectively. Therefore, taking the derivative functions of marginal social cost and 

benefit eliminates the number of implementations (X) as a variable, preventing the model from 

specifying the social ideal number of implementations. Thus, in order to include the number of 

implementations (X) in the marginal cost or benefit functions, at least one variable must also be a 

function of ‘X’. Due to the nature of the 51% attack, a case could be made for the benefits of 

increased security being a function of the number of implementations. As the number of 

implementations increases, it would be more difficult to execute the attack (Yli-Huumo et al., 

2016). Additionally, the benefits of increased research could also be a function of ‘X’, as more 

patient information would be entered into the blockchain. Altering these variables to be a 

function of ‘X’, indicated by 𝐵=>?[ and 𝐵B>=[, may simulate the cost-benefit analysis of 

blockchain implementation for institutions under a new assumption: the first implementation has 

already occurred. Thus, even at the private level, the private benefit function alters: 

𝑬𝒒. 𝟏𝟓				𝐵' = (1 − 𝛽') ∗ 𝐵=>?[(𝑋) + 𝛾 ∗ 𝛿 ∗ [𝐵B>=[(𝑋)] − (1 − 𝛼) ∗ 𝐶DE= 

This new expression of private benefit captures the nature of the blockchain, in which the 

received benefits increase when more institutional implementations have already taken place. 
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Through this logic, it can be argued that the benefits of increased security and research are 

greater for the second institution, and even greater for the third institution that undergoes 

blockchain implementation. Thus, under the private level cost-benefit analysis shown in Eq. 9, 

institutions are more likely to be incentivized to undergo implementation when they are not the 

first to do so. This result agrees with our previous finding of a first mover disadvantage in 

implementation.    

 At the social level, adjustments to the changes described above produce a different 

expression in the marginal cost-benefit analysis: 

𝑬𝒒. 𝟏𝟔		𝑀𝐶4 = 𝐶) + 𝐶+ + 𝐶, +	(1 − 𝛼) ∗ 𝐶DE=

= 	 (1 − 𝛽) ∗ 𝐵=>?[(𝑋) + 𝛾 ∗ 𝛿 ∗ [𝐵B>=[(𝑋)] + 𝐵L(𝑁) = 𝑀𝐵4 

Once the function for security and research benefits can be defined in terms of ‘X’, the socially 

ideal number of implementations can be determined. If we assume that the functions are linearly 

dependent on ‘X’, where 𝐵=>?[(𝑋) = 𝐵=>? ∗ 𝑋 and 𝐵B>=[(𝑋) = 𝐵B>= ∗ 𝑋 , and 𝐵=>? and 𝐵B>= are 

the respective average benefits derived by private institutions that join the blockchain, we see 

that the socially ideal number of implementations becomes: 

𝑬𝒒. 𝟏𝟕				𝑋 =
𝐶) + 𝐶+ + 𝐶, +	(1 − 𝛼) ∗ 𝐶DE= − 𝐵L(𝑁)

[(1 − 𝛽) ∗ 𝐵=>? + 𝛾 ∗ 𝛿 ∗ 𝐵B>=]
 

As indicated, this result is subjected to change according to how the functions of security and 

research benefits are defined with regards to the number of implementations. However, although 

Eq. 17 was formulated through an extremely simple assumption, it shows that the model itself is 

adaptable and able to specify the socially ideal number of implementations. 
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Conclusion 

 As blockchain technology rises in popularity, numerous potential applications have been 

theorized. The nature of the blockchain has been proposed to improve security and functionality 

of computer-based data storages, and to introduce such benefits to healthcare information 

systems (Ekblaw et al., 2016). This paper utilizes a modeling approach to assess whether 

implementation of blockchain technology into current healthcare information systems would 

increase social efficiency. Results show that there is a social demand for blockchain 

implementation, but institutions may not be financially incentivized at the private level, as they 

are subjected to a first-mover-disadvantage. It is also shown that only large and advanced 

research institutions will be incentivized to undergo implementation. However, after the first 

implementation, subsequent institutions will face a lower barrier to implementation due to 

decreases in costs as well as increases in benefits. These results support the hypothesis that 

blockchain implementation increases social efficiency, but some policy changes may need to 

occur for such social demand to be met. To lower the barrier to private implementation, we 

recommend governments to grant subsidies into blockchain software development, specifically 

for research-centered institutions. As for extensions of the study, future works should focus on 

accurately defining the relationship between private and social cost and benefit, as well as the 

relationship between the number of implementations and the security and research benefits 

derived from implementation.  
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